1.1.光纤新技术
光纤制作技术现已基本成熟,现已大量生产,当今普遍采用的是零色散波长λ0=1.3μm的单模光纤,而零色散波长λ0=1.55μm的单模光纤已研制成功,并已进入实用阶段,它在1.55μm波长的衰减很小,约0.22dB/km,所以更适合于长距离大容量,是长距离骨干网的优选传输介质。
目前,为了适应干线和局域网的不同发展要求,已研制出非零散光纤、低色散斜率光纤、大有效面积光纤、无水峰光纤等新型光纤。而人们对超长波光纤的研究,其传输距离理论上可达到数千公里,可以达到无中继传输距离,但其仍处于一种理论探讨阶段。
1.2.光纤放大器
1550nm掺饵(Er)光纤放大器(EDFA),掺饵光纤放大器为数字、模拟以及相干光通信的中继器,可传输不同的码率,并可以同时传输若干波长的光信号。在光纤网络升级中,由模拟信号转换为数字信号、由低码率改为高码率,系统采用光波复用技术扩容时,都不必改变掺饵放大器的线路和设备。掺饵放大器可作为光接收机的前置放大器,光发射机的后置放大器及光源器件的补偿放大器。
1.3.宽带接入
针对不同环境下的商业用户和居民用户有多种宽带接入的解决方案。接入系统主要完成三大功能:高速传输、复用/路由、网络延伸。目前,接入系统的主流技术有,ADSL技术其能在双绞铜线上经济地传输每秒几兆比特的信息,它即支持传统的话音业务,又支持面向数据的因特网接入,局端ADSL接入复用设备将数据流量复用后,选路到分组网络,将话音流量传送给PSTN、ISDN或其它分组网络。
CAblemodem能在光纤同轴混合网中提供高速数据通信,它将同轴电缆传输带宽划分为上行通道和下行通道,因而能提供VOC在线娱乐、因特网接入等业务,同时也能提供PSTN业务。固定无线接入系统在智能天线和接收机等方面采用了许多高新技术,是接入技术中的一种创新方式,也是目前接入技术中最不确定的一种方式,仍需在今后的实践中进一步的探索。而光接入系统能提供足够的带宽,支持目前可预见的各种业务,但目前尚有技术和经济等问题需进一步的在产品开发及技术上创新,以使其成为21世纪网络接入系统的主流技术。
1.4.硅技术
光网络技术的创新进一步需要从石英光纤维到复合半导体设备等一整套元件,其中包括激光器、传感器、及调制解调器等。为满足这些广泛的功能要求,针对低成本电子设备发展起来的硅技术正在挺进光电学领域,目前,对光学的硅化处理正沿着两条分别被称为硅光实验室(SIOB)及微电机械系统(MEMS)的道路不断创新。
SIOB技术是在一个硅晶片上,无源器件与激光器和传感器可以集成在活字支撑架上,上面连接着各种各样的元件,对于小型模块,采用SIOB技术制造的光学集成电路有足够的密度。SIOB技术已被应用于集成激光器、光电传感器、无源波分割器、WDM滤波器、无光光纤吸球状透镜附加体、旋转镜、光学转向元件,以及电积金属等。
MEMS是一种微小的坚固机械部件,其尺寸通常小于1毫米。MEMS具有惊人的丰富功能,并可于复杂芯片实现集成,目前MEMS技术仍处于研究阶段,科学家试图利用硅芯片本身制造出用于光学通信的带有可移动部件的元件,该项技术有着广阔的发展前景,此技术应用将使光网络产生质的飞跃。
光网络的发展与创新需要从石英纤维到复合半导体设备等整套元件,而硅技术正在挺进光电学领域,并在这一领域不断创新,现已形成“硅光电技术”这一交叉科学,为硅光电技术的发展奠定了理论基础,现已发展成为推动光网络快速发展动力。
硅技术自80年代中期以来,硅基片及其处理技术已趋于成熟,因硅具有人们渴望得到的许多物理特性,如其折射率稳定,并易于控制,在一个硅晶片上,无源器件与激光器和传感器可以集成在活字支撑架上,采用SioB技术制造的光学集成电路已具有足够的密度,对于单一晶片进行处理即可生产出大量芯片,多种功能已经集成在芯片上。SioB技术已被广泛应用于集成激光器、光电传感器、无光光纤导分割器、WDM滤波器、无光光纤以及球状透镜附加体、旋转镜、光学转向元件以及电积金属等。
从90年代中期开始,集成光电技术就开始应用于通信网络,如Dragone路由器,一种在DWDM系统中合并和路由波长信道的光集成电路,现已从8信道发展为72信道,与此同时微电机系统(MEMS)是一种微小的坚固机械部件,微电机系统制造可以通过外延生长,其图案形成和蚀刻处理等,集成电路制造技术在基片上完成,深信在21世纪微电机系统这一硅光电领域的创新技术,在不久的将来应用于下一代光网络。
2.接入网
所谓接入网是指交换局到用户终端之间的所有机线设备(接入网的物理位置),其中主干系统为传统的电缆和光缆,一般长数公里;配线系统也可能是电缆和光缆,其长度一般为几百米;而引入线通常长几米到几十米。
ITU-T规定,接入网是指由业务接点接口(SNI)和相关用户网络接口(UNI)之间的一系列传送实体(诸如线路设施和传输设施)所组成,为传送数据业务提供所需传送承受能力的实施系统,它可以经由Q3接口进行配置和管理。传送实体提供必要的传送承载能力,对用户信令是透明的,不作处理。它可以被看做与业务和应用无关的传送网,主要完成交叉连接、复用和传输功能,一般不含交换功能。
网络接入方式的结构,统称为网络的接入技术,其发生在连接网络与用户的最后一段路程,网络的接入部分是目前最有希望大幅提高网络性能的环节。对本地环路网来说这是一个瓶颈,全球拥有上亿条用户接入线,因其功能有限阻碍着网络用户业务的发展,而与用户线路另一端的高性能设备形成了鲜明的反差。随着电子技术和光电技术的迅速发展,数字电子系统(从个人计算机到网络交换机或路由器)以及信息传输设备性能都在快速稳步的增长,为解决这一环路瓶颈提供了广阔的发展前景。由于在本地环路铜线上传输的仍然是模拟信号,人们仍然使用着狭窄的无线电频道穿越拥挤的无线电频谱。
目前如何大规模拓宽网络接入的瓶颈为全球现有的7.5亿条接入线提供超宽频带,已是当前网络技术发展的焦点,瓶颈是相对的,一对金属线可以提供支持双向交谈的足够容量,但传统的铜线所能提供的带宽,对高性能的数据网络和因特网来说的确有些勉为其难,数据用户不仅希望与对方交谈,而希望通过视频会议系统看到对方的虚拟影像,所以对传统的接入技术(接入方式、接入布线)提出高性能的要求,以突破网络接入环节的瓶颈。以增加网络最后一段路程中的带宽,在大范围达到并满足用户在家庭或小型办公室的通信要求的基本前提。
3.接入技术
从总的考虑,接入技术可以分为有线接入技术和无线接入技术两大类,有线接入技术又可分为铜线接入技术和光纤接入技术两类。
3.1铜线接入技术
铜线接入的着眼点主要是考虑如何利用当前通信网中约占总传输长度1/3的用户线部分。当前的铜线接入技术主要有:高速数字用户线(HDSL)技术、不对称数字用户线(ADSL)技术以及甚高比特率数字用户环线(VDSL)技术等。
HDSL系统采用2B1Q线路码型,利用回波抵消、自适应滤波、信号处理等多项技术解决了在一对普通用户线上双向传输1.168Mbps信息,两对用户线上传输2.048Mbps信息的能力。
HDSL的优点是充分利用现有电缆实现扩容,并可以解决少量用户传输384kbps和2048kbps宽带信号的要求。其缺点是目前还不能传输2048kbps以上的信息,传输距离限于6~10千米以内。
ADSL主要用来传输不对称的交互性宽带业务。和HDSL一样,ADSL也是力图提高普通用户线的高频传输能力。所谓“不对称”指的是这类系统上行方向(从用户终端向交换机的发送方向)与下行方向(从交换机向用户终端的发送方向)的信息速率不对称。其上行方向可传送64kbps~384kbps的数字信号;其下行方向可传送1.5Mbps~6Mbps的图像和宽带图文信号。
传输距离可达3千米~4千米。ADSL的主要用途是提供视频点播(VOD)业务。每个6Mbps带宽的ADSL可传送2~3套MPEG-Ⅱ或4套MPEG-I数字图像信号。ADSL采用离散多频传输编码和无载波调幅、调相技术。从技术角度看,它解决了交换机到用户传输不对称的交互式宽带业务的方法,在光纤接入网建成之前,如果需要发展家庭点播电视、家庭电视教育、远程医疗等视像业务时,使用ADSL解决散居用户的宽带业务需要,只需利用原有铜线的传输能力而不需要改造现有的用户环路。但ADSL对宽带业务来说只能作为一种过度性方法。
VDSL是鉴于现有ADSL技术在提供图像业务方面的宽带十分有限以及经济上的成本偏高的弱点而开发的。普通模拟电话线不需更动,图像信号由端局的HDT图像接口经馈线光纤送给远端,速率可以为STM-4或更高,图像业务既可以是由ATM信元所携带的MPEG-Ⅱ信号,又可以是纯MPEG-Ⅱ信息流。在远端,VDSL的线路卡可以读取信头或分组头并将所要的信元或分组拷贝给下行方向的目的地用户双绞线。远端收发机模块带一个普通电话业务耦合器(实际为一个异频双工器又称普通电话业务分路器)负责将各种信号耦合进现有双绞线铜缆。